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THE DISTRIBUTION OF EXTREME VALUES OF SAMPLES DRAWN FROM

A GAUSSIAN POPULATION

by

Maurice J. Daintith

ABSTRACT

For some applications it is necessary to know the probability distribution
functions of the maximum value (either absolute or else without regard
to sign) occurring in large samples drawn from a parent stochastic
population. Exact expressions are derived, and in addition useful approx-
imations and limiting forms are presented; these also bring out clearly
some interesting properties of the distributions.

INTRODUCTION

If samples of size n are drawn from a gaussian population, two extreme
values can be identified within each sample,

Two types of extremum may be defined. The first is the true maximum
value. This would be the appropriate parameter for use in, say, designing
a sieve. The second type is the maximum deviation from the mean. This
would be natural in investigating noise peaks. This memorandum deals
mainly with the second of these distributions.

The purpose of this memorandum is to investigate the statistical properties
of these extremes, present numerical values, and derive some approximate
expressions for practical use.

NOTATION, FUNDAMENTAL EQUATIONS, AND BASIC EXPRESSIONS

1.1 Notation

The notation adopted is that used by Abramovitz and Stegun [iJ. Throughout,
the parent population will be taken as having zero mean and unit standard
deviation.I.
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1.2 Fundamental equations

The gaussian probatility density function is

Z(x) = exp(-kz)/f71 (Eq. 1)

and cumulative probability functions are

P(z) = Iz Z dz (Eq. 2)

Q(z) = 1 - P(z) = f Z dz (Eq. 3)
z

A(z) = 2P(z)-l = 1-2Q(z) = 2 fo Z dz , (Eq. 4)

(z positive)

so that

Z = 9P/az = -BQ/az = A,az (Eq. 5)

Further useful relationships are

aZ/az = -zZ (Eq. 6)
and

P(-z) = Q(z) = 1-P(z) (Eq. 7)

1.3 Basic expressions

Consider a sample of n. Cn (x), the cumulative probability function of

x, where x is the greatest value of IzI in the sample, can be
immediately written down. C n(X) is the probability that all members of

the sample lie between ± x. For each member of the sample, the probability
is P(x) - P(-x), which from Eq. 7 is 2P(x)-l, and from Eq. 4 is
Ax). Therefore for a sample of n

Cn (x) = An(x) . (E (Eq. 8)

The probability density function Pn(X) = an (x)/ax, which, using

Eq. 5, becomes

Pn(X) = 2nZ(x) A'(x) (Eq. 9)

I2N.



The maximum likelihood value of x is found by setting apn(X)/ x - 0.
Differentiating Eq. 9, and using Eq. 6, yields

2(n-l)Z(x1 ) = xA(x1 ) , (Eq. 10)

which is a transcendental equation yielding x, as a function of n.

The mean value , is, from Eq. 9,

= 2n xZ(x) An-l(x) dx (Eq. 11)

and higher moments may be similarly defined.

2 EXACT NUMERICAL RESULTS

2.1 Confidence limits

Given a confidence limit C , from Eq. 8

A(xc) CI n  (Eq. 12)

and from published tables of P(x) [4(l+A(x))], or by using an appropriate
approximation, [e.g. [i] Ch. 26 para 2.22], xc may be readily determined.

Figure 1 gives plots of xc as a function of n over the range n = 10

to n - 106, for values of C of 0.99, 0.95, 0.5, and 0.05. The value for
C = 0.5 is, by definition, the median, xm.

Two features of these curves are noteworthy. In the first place, for
all of them x is a very slowly varying function of n. For example,
the median value increases from 1.83 to only 4.97 over a five decade
range of n.

Secondly the 50% value does not lie midway between the 5% and 95% values,
indicating that the distribution is markedly skew. The extent of the
skewness can be appreciated from Fig. 2, which shows plots of the
probability density function (Eq. 9) for values of n of 102, 10W and
106. Equation 9 shows immediately why this should be so. The factor Z

in that expression is multiplied by An-1. Although A itself is very
close to unity over the whole range of interest, when it is raised to
the high power of n-l it varies very rapidly, depressing the probability
for the lower values of x.

I.
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2.2 Maximum likelihood

Equation 10 may be written as

exp(-_X 2 ) = x2A(x) y/2/(n-1) (Eq. 13)

and in this form is readily solved iteratively, since the exponential
term varies much more rapidly than the terms on the right-hand side.
[Note that A(x1 ) is here only to the first power, and differs signif-
icantly from unity only for the smaller values of n; the lowest value,
for n = 10, is 0.g2. It is therefore justifiable to use a reasonable
approximation for A(xl); a suitable one is given in ii Ch. 26,
para 2.16.]

The resulting values for the maximum likelihood value - the mode -
are plotted in Fig. 1. They run nearly parallel to, and not far from,
the median (50% confidence limit). This suggests that these central
values, despite the non-gaussian distribution, are useful parameters.

2.3 Mean

Equation 11, for the mean value, cannot be evaluated analytically.
Numerical integration would be a possibility, but it seemed preferable
to search for an adequate approximation that would give some feeling for

the way that R varies with n. An approximation sufficiently good
over a part of the range (n = 102 to 101) is described in Ch. 3. The
results are shown as the dotted line in Fig. 1. There is a reasonable
coincidence with the median curve, once again supporting the usefulness
of the central values.

2.4 Variance

In principle, the variance would be obtained by evaluating the mean

square value of x[=x2] , and the mean value R, and calculating the
variance as

However, neither quantity can be calculated exactly, and since the
p difference turns out to be small compared with the two mean values, the

approximation used for calculating the mean is not adequate. In addition,
even in uc',g the same type of approximation to calculate E2, the
result aaars as a small difference between two large quantities. For
this reason, and since anyway the distribution is so skew, this approach

I. :was abandoned.
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Instead, I have used a quantity which I refer to as the aemi-apread, s
defined as follows.

Using Eq. 12, compute x for the confidence limits of C = 0.84134 and
0.15866. Half the difference between these x-values is defined as the
semi-spread, s. If the distribution had been gaussian, s would in fact
have been the standard deviation. In any event, it defines a range
within which 68% of the x-values lie.

The quantity s is plotted in Fig. 1. It decreases with n , although
very slowly, demonstrating the central tendency in the distribution (as
evident in Fig. 2). The small value of s compared with, say, x, or
xm shows that these latter values are reasonably well-defined, and

therefore of potential value.

Some confirmation that the semi-spread s is a meaningful value in
defining the precision of the distribution was obtained by finding the
ratio of the range between the 5% and 95% values of x to the whole
spread 2s. Over the whole range of n from 10 to 106, this ratio was
nearly constant (1.66 to 1.70), indicating that the shapes of the curves
were sensibly the same. (It is of interest that the value of the ratio
for a truly gaussian distribution is 1.64, not markedly different from
the figures quoted above.)

3 APPROXIMATIONS

The aim of finding simple approximate- he statistical quantities
previously calculated is partly to prn quick method of calculation,
and partly to give an easy understanding le way in which the para-
meters vary with n.

3.1 Median

From Eq. 12, the median value (c = ) is determined by finding xm
from

A(xm) = () n (Eq. 14)

Now over the range considered, A is not much less than unity, so that
Q(xm) = (l-A) is a small quantity.

Hence, since A = l-2Q, tn A% - 2Q, and, from Eq. 14,
1

-2Q " jjn2, (Eq. 15)

1.. or
Q(x ) Zn2/2nm
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The problem now is to find xm from Eq. 15. In paras 2.22 or 2.23 of

Ch. 26 of [i it is shown that, with considerable accuracy, xm is a

function of IZn(/Q 2 ), so that, from Eq. 15, xm  is a function of

Zn(n). Plotting xm against Zn n produced a nearly straight line

almost passing through the origin, suggesting that a crude approximation

would be Xmc/n n. An obvious attempt to find a better approximation

would be to try a modified power law, viz: xm (Zn n)O , or, taking

logarithms, Zn xm = =+ZnZn n, a linear relationship. A plot of

Zn xm against ZnZn n produced a straight line to within the limits of

graph paper accuracy.

Accordingly, a linear regression curve was fitted to Zn xm as a function

of tntnn (using values of n of 10, 20, 50, 100, 200,..... 106).
The result was

Zn xm 0.1397 + 0.5593 ZnZn n (Eq. 16)

-with the very high coefficient of determination of 0.99995.

Equation 16 yields

xm = 1.1499(Zn n)0 .5593  (Eq. 17)

Equation 17 predicts the value of xm over the whole range of n to an

accuracy of better than 0.3% (i.e. of at most two units in the second
decimal place).

It will be noted that this differs only slightly from the square root
'first guess'

3.2 Mode

Since the modal curve so closely parallels the median (Fig. 1) it is
natural to try the same type of approximation. The straight line
regression fit yielded

tn x, = 0.0732 + 0.5795 Znin n

with a coefficient of determination of 0.99986, so that

x, = 1.0760(tn n) 0 5795  (Eq. 18)
i.

The errors from Eq. 18 are at most about 0.7% (about three units in the
second decimal place).

7



3.3 Semi-spread s

The semi-spread is defined as 4(xb-xa), where

A(xa) =C a  A(xb) = Cb

Ca = 0.15866, Cb = 0.84134. Writing A = 1-2Q and approximating, as

above,

Q(xa) ,, ktnCa)/n, Q(xb) _ (tnCb)/n.

Now try the very crude approximation

x2  -2.nQ

whence

X Xa na 2 Zn(Qa/Qb) - 2 ZR[(tnCa)/ZnCb] 4.73

But xb - xa =2s, and xb + xa %2xm  , whence sxm , 1.18.

This relationship is not too badly astray, since, using the calculated
values, it turns out that sx varies only from 0.92 to 1.13 over the
whole range of n, while s mitself varies by a factor of 2.2.

The obvious suggestion is therefore to try an expression of the form
s = c (Zt n)8 , in the same way that xm was fitted. As might be
expected, the approximation is worst for small n, and it appeared more
satisfactory to omit the value n = 10, starting from n = 50. The
result, with a coefficient of determination of 0.9989, is:

s = 0.787 (Zn n)-0.469

in which the errors are < 1% for n > 50, becoming 2% for n = 20, and
5.5% for n = 10.

3.4 Mean

The evaluation of Eq. 11, repeated here for convenience, presents some
difficulties

R - 2n f- xZ(x) A n(x)dx (Eq. 11)

0

Straightforwardly, one would endeavour to find an approximation for
A(x) that would allow Eq. 11 to be integrated. However, A is raised

L.



to a very high power for large n, and the errors in An '1 would be
intolerable. However, Eq. 11 may be transformed into a more malleable
form as follows. Noting that xZ = -aZ/ax [Eq. 6], Eq. 11 may be
integrated by parts, yielding

= -2nZ An-i o + 2n(n-1) fo ZAn'2 dA dx
0 dx

The first term vanishes at both limits, and in the integral it is

legitimate to use A as the variable of integration (since A is a
monotonic function of x).

An-2

Thus R = 2n(n-1) I Z A dA (Eq. 19)
0

Now in Eq. 19 if one can find an approximation for Z, as a function of
A , that is correct to a few percent over the region of importance

(which from Fig. 2 is confined to a restricted range of values),
can be determined to about the same accuracy (since Z is raised to the
first power only).

The problem is, then, to find an approximation to Z as a function of
A. Not only must it be of adequate accuracy, but it must also be of a

rform permitting Eq. 19 to be integrated. For example, an approximation
* : can be found for x in terms of tn Q i.e. in terms of tn(l-A), and

since Z = 1I/-27 exp(- x2 ), this will give Z as a somewhat complicated
exponential function of tn(l-A). But this does not lead to an integrable
form.

A possible solution is suggested as follows.

t Para 2.4 of Ch. 26 in i1 gives an upper bound (which is also quite aIgood approximation) to P(x) , viz:

P(x) = -I[l + (l-exp(-2x2/7)) ]

or

A2 x) = 1 - exp(-2x2/P)

so that, if the inversion were permissible,

Z = (//-2n) exp(-x 2)

* (1//" ) [I-A2]T/4

However, this Is a poor approximation. Over the range 2 < x < 4,
errors of as much as 13% in Z are given by this expression. It does
suggest however that, at least over a limited range, one may approximate

9



may approximate z in the form Z .~ at[I-A)0, where at and 0 are
constants. Taking logarithms, this implies that x2 is a linear
function-of tn(I-A2) It was found, in practice, that, over the'range
2 < x < 4,

- x /2 -,. 0.2532 + 0.9164 Ln(l-A2),

or

Z *0.5139(1-A')Ol 6

*with errors <3% over the whole range.

Applying this approximation to Eq. 19 yields

i ~2n(n-l) x 0.5139 '(1-A2)0.9lS4 A n 2 dA
10

WJritintg A a -

a 0.5139n(n-l) f0(l~t)Bt(n-3)'2 dt, (Eq. 20)

where 0 -0.9164

But the integral is a known beta function

a0.5139 n(n-1) B(l+, n-l~

* where

B(l+0,(n-l)/2) = F(1+0) i(n-l)/2/I (n+1+20)/2 (Eq. 21)

Expression 21 can be considerably simplified, using Stirling's approximation
for the two gammna functions involving n.

Neglecting terms of the order 1/n (and noting tn(1-/n). - 1/n)

tn 4 tn(2n) + (n/2-l)[tn(n-1) - tn 2] n/2+4j

4~ 41n(2r) + (n/2-1) Zn(n/2) -It -n/2 +

Similarly,

tn I (n+1+20/2) '.4 tn(2ir)+(n/2+0 ) n(n/2)+% (1+20 n/2 -0.

whence tn[ Il-)2)/I(n+l+20)/2))

10



so that B(+B,(n-IY2) " i (n/2)-('+$)

and from Eq. 20

= 0.5139 F-1+$) (n-1) n-0 26

1 W'= 0.9678, so the final result is

i = 1.877 x (n-l)/n 0.9164

or, for large n , i nu 1.877 n0
0836

It is this equation that has been used over the range shown In Fig. 1 to
calculate a rough value of x . Errors of several units in the second
decimal place would be expected.

4 THE ABSOLUTE MAXIMUM

If interest lies in the distribution of the maximum value of x, taking
account of sign, a similar treatment to that for the modular values
presents no extra problems. Evidently the cumulative distribution

function would be C(x) pn(x) (where x can now range between 4,

and -), and the distribution function would be, by differentiating,

p(x) = nPnlZ.

However, it is possible to obviate the whole problem by the following
considerations. Evidently, we are interested only in the range of
values over which #.(x) differs significantly from zero, which we may
plausibly expect will be the range over which C(x) is not too far
removed from 0.5. Furthermore, we would expect P(x) and A(x), for
large n at any rate, to be not much smaller than unity; i.e. Q(x)
will be small.

Now since P = l-Q, and A = 1-2Q, we may expand the two cumulative
n a nfunctions P and A by taking logarithms. Retaining two terms in the

expansions

tn P "- Q+4Q2

tn A " -2Q+2Q ,

whence
n pn nQ+knQ'

IL 
n An ' -2nQ+2nQ

2

Al . ,,

11



Substitute 2n in the expression for tn pn

tn p2n , -2nQ+nQ2

and hence
tn[P2n/An] = -nQ

2

Now nQ is not too far removed from 0.5 and therefore at maximum Is,
say, unity;

so that tn[P 2n/An] is of the order of -Q

or P2n/An N e-Q ^ l-Q, and since Q is small p2n % An.

The implication of this is that the distribution of absolute values is
almost exactly the same as the distribution of modular values for a
sample of half the size. In other words, the curves of Figs. I and 2
may be used to estimate absolute values if entered with n - half the
number in the sample.

A few trials, in fact, showed that this holds true even down to n - 10
to an accuracy of at least three decimal places.

This is not an unexpected result, noting that, for each sample of n,
selecting the greatest modulus is equivalent to selecting the largest
value from either the positive values or the negative values, while the.
selection for the absolute maximum will involve generally only the
positive values (the change, in a large sample, of the true maximum
being negative can be neglected for all except very small values of x).
Hence, for the absolute maximum we normally can ignore all the negative
values, which will constitute about one-half of the total sample.

5 A GENERAL LIMITING FORM FOR LARGE SAMPLES

In the course of this small study, I observed a very interesting limiting
form that holds for a large class of parent distributions. The observation
is not, however, new, since it appears in [i Ch. 26, para 1.30 as
"Extreme-Value (Fieher-Tippett Type 1, or doubly exponential)" * The
reference to the original work is not readily available, so that I do
not know if the derivation I give below corresponds with that of Fisher
and Tippett.

Consider a parent distribution Z(x), in which, Initially, the only
requirement is that Z approaches zero asymptotically as x tends to
infinity. The cumulative probability P(x) is defined as usual, by

p .x Z dx (Eq. 22).

12
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For the absolute maximum of a sample of n , the cumulative probability

as before

C(x) = pn(x) (Eq. 23)

and the probability distribution

p(x) =C/ax (Eq. 24)

Define

y = tn C = n Zn P (Eq. 25)

Since C +1, y -O as x +

differentiating Eq. 25, and using Eqs. 22 and 24,

a =y/xp/C = nZ/P . (Eq. 26)

and, differentiating again

a2y/ax2  (ap/ax)/C - p2/C2 .

= n(DZ/ax)/P - nZ2/P2 (Eq. 27)

Eliminating P between Eqs. 26 and 27 yields the two equations

a2y/ax2 - (Bn Z/Bx)(By/Bx) /(y/Bx)2/n = 0 (Eq. 28)
and

(ap/ax)/C = (9y/ax) 2+(aZn Z/ax)jay/a*(3y/3x)2 /n , (Eq. 29)

Now consider the maximum value of p (the modal value), and let this
occur for x = = (this was denoted by x- in previous sections). From
Eq. 29 this will be given by

(By/ax) (1-1/n) = -(BZn Z/ax) . (Eq. 30)

Since Z decreases with x , by hypothesis, the right-hand side of
Eq. 3 is positive, and will be written as (11a), where 0 is a positive
quantity. Since we are consideri-g very large n , the term I/n on

L_. the left-hand side may be dropped, yielding

Oy/ax)c = -(atn Z/ax)= = 1/8 (Eq. 31)

13



Equation 28 may be written as

2y/x 2 + (ay/ax) [-Dtn Z/ax + (ay/ax)/n] = 0.

The limiting form of this equation for large n becomes

a2y/ax 2 - (ay/ax) (an Z/ax) = 0 (Eq. 32)

Again, since p(x) is significantly greater than zero over only a
limited range, about x = , we may insert the central value of the
slowly varying factor (an Z/ax) in Eq. 32, i.e. from Eq. 31, the
constant -I/$. Equation 32 thus becomes

iI
P Y/ax2 + 1/6 ay/ax = 0

which integrates immediately to
.I

ay/ax - K exp(-x/$)

, To find K , put x = , then, using Eq. 31

1/0 = K exp(-/a),

yielding

ay/ax 1/B exp -[(x--)/$] , (Eq. 33)

Equation 33 also integrates immediately to

y = - exp -[(x--)/] , (Eq. 34)

there being no constant of integration since y-O as x- .

Hence

C = ey = exp (et) , (Eq. 35)

where t - (x-=)/ •

But from Eq. 26

p = Cay/ax = (l/0) exp(-t -et) (Eq. 36)

fL Equation 36 is the expression given by Fisher & Tippett quoted in [ii.

From Eqs. 26 and 31, - is obtained from the transcendental equation

.n Z( )/a = + n Z(=)/P(c) = 0 (Eq. 37)

14
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and from Eq. 31

1/ = -(aZn Z(=)/a) (Eq. 38)

If the distribution is symmetrical about the mean, the same type of
procedure will yield the distribution of deviations from the mean, the
results being

C = exp(-e t) (Eq. 39)

p = (1/8) exp(-t -e-t) (Eq. 40)
where

t = (x-c)/B (Eq. 41)

(atn Z(B)/B-) + 2n Z/(2P-I) = 0 (Eq. 42)

(1/s) = -(atn Z(-)/am) (Eq. 43)

With one exception, these are the same equations as for the absolute
~' maximum. The exception is the value of (Wen Z(-)/r) (Eqs. 37 and 42;

viz nZ/P and 2nZ/(2P-l) respectively. Since for very large n, - becomes
very large, so that P(a) tends to unity, the first expression tends
to nZ , and the second to 2nZ.

This implies that the distribution for the absolute maximum has exactly
the same form as for the maximum deviation from the mean, provided that
for the former, the tables and curves are entered with (n/2) instead
of n . This confirms the finding in a previous section.

For a gaussian distribution, Z = (1// 27) exp(-'x2)4.,-§ that, from
Eq. 43, 1/0= •

Unfortunately, this limiting expression is not very accurate, even for
n = 106. It could hardly be expected to be so, since it is independent
of the parent distribution (within limits).

There is, however, the advantage that the mean, median, and variance are
readily computable.

From Ref. 1,

Mean R = € + ya (where y = Euler's constant = 0.577 ....)

variance 02 = (7rB) 2/6

In addition, by putting C = k in Eqs. 35 or 39,

median xm = - -(Zn n 2) = a + 0.3665 a

From this, it appears that the mean and the median are very nearly equal,

L and both are greater than the mode. This compares well with the curves- of Fig. 1.
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Finally, for a gaussian distribution, where =/

* - r = 1.28

This may be compared with the approximation

sxm a 1.18, shown earlier.

SUMMARY AND DISCUSSION

The main results are summarized as follows:

(1) For samples of n , where n ranges from ten to one million, the
following approximations may be used to estimate the statistical parameters
of the maximum deviation (the modulus)

(a) The most likely value (the mode) is given by

x, 1.076(Zn n)
0 .58

(b) The median value is

xm n 1.15(tn n)
0 .56

(c) The semi-spread (half the range, which includes 68% of

values) is

s ", 0.79(tn n)
-0 .4 7

(d) The probability distribution function p(x) can be
described by a universal curve relating

sp(x) to (x-x,)/s

(2) For the absolute maximum the formulae and curves for the modulus
may be used, by entering with n equal to half the number in the sample.

(3) A limiting form as n--w, which holds for a large class of parent
distributions Z(x) , is that

C =

p * exp[-t -e-t

:L where
, t = (x-=)/B.
tt

rr
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, the modal value of x , is given by

aZn Z(M)/a + nZ = 0 (absolute maximum)

aZn Z(-)/a- + 2nZ = 0 (maximum deviate)

1 = -atn Z(-)/a-

For this distribution

the mean x = + YO (y = Euler's constant = 0.577 ....)

the median xm = = -(Zn Zn 2)/B

the variance a' = ( 6)'/6.

This expression is not as accurate, up to n = 106, as the empirical
expressions in this study.

In discussing these results it must be remembered that the aim is
pragmatic - to find easily handleable expressions for the distributions,
not elegant theoretical results.

The most striking fact is the accuracy with which parameters of the
distributions may be estimated to a respectable accuracy, over a very
large range of sample size, by the use of very simple expressions. The
derivation of the limiting form sheds some light on why this may be
expected.

The second feature is that, perhaps contrary to intuition, the distribution
of extreme values turns out to be predictable within quite narrow limits.
The implication justifies the common use of confidence limits, particularly
for large samples.

A third feature is perhaps of interest. In general, statisticians
search for 'efficient' statistics (in the Fisher sense). That is, they
prefer to deal with statistics that give the maximum possible information
about the parent distribution. This is, of course, especially true of
investigations In which the aim is, by experiment, to determine what the
parent distribution is.

However, the inverted problem, that of finding a predictable statistic,
does not necessarily mean that the best choice of statistic is an efficient
one. Since an inefficient statistic gives little information about the
parent distribution it follows, conversely, that in many instances lack
of knowledge of the parent distribution is of relatively minor importance.
This can be of value in system design.

The l'mit of this approach is, naturally, to find the currently fashionable
'distribution-free' parameters. Here, in a noise background, for example,
it has been shown that, for large samples, the distribution of the
maxima is sensibly independent of the nature of the parent distribution,
and will be scaled according to the variance. This implies that, in
detecting a signal against noise, the effect of noise spokes hardly depends
on whether the noise is gaussian or of some other distribution: it can be
predicted for all practical purposes merely from a knowledge of the
mean intensity -a somewhat unexpected result.

JN~
17



REFERENCES

1. ABRAMOWITZ, M. and STEGUN, I.A. Handbook of Mathematical
Functions, Applied Mathematics Series. 55. Washington, D.C.
National Bureau of Standards, 1964.

t.°

S

18


